Polynomial invariants for a semisimple and cosemisimple Hopf algebra of finite dimension Dedicated to Professor Noriaki Kawanaka on the occasion of his 60th birthday
نویسنده
چکیده
We introduce new polynomial invariants of a finite-dimensional semisimple and cosemisimple Hopf algebra A over a field k by using the braiding structures of A. We investigate basic properties of the polynomial invariants including stability under extension of the base field. Furthermore, we show that our polynomial invariants are indeed tensor invariants of the representation category of A, and recognize the difference of the representation category and the representation ring of A. Actually, by computing and comparing polynomial invariants, we find new examples of pairs of Hopf algebras whose representation rings are isomorphic, but representation categories are distinct. Mathematics Subject Classifications (2000): 16W30, 18D10, 19A49
منابع مشابه
Monoidal Categories of Comodules for Coquasi Hopf Algebras and Radford’s Formula
We study the basic monoidal properties of the category of Hopf modules for a coquasi Hopf algebra. In particular we discuss the so called fundamental theorem that establishes a monoidal equivalence between the category of comodules and the category of Hopf modules. We present a categorical proof of Radford’s S formula for the case of a finite dimensional coquasi Hopf algebra, by establishing a ...
متن کاملThe Equality of 3-manifold Invariants
The invariants of 3-manifolds defined by Kuperberg for involutory Hopf algebras and those defined by the authors for spherical Hopf algebras are the same for Hopf algebras on which they are both defined. Introduction The purpose of this paper is to compare two previously defined invariants of 3-manifolds. Let A be a finite-dimensional Hopf algebra over a field F with antipode S. Then if S = 1 t...
متن کاملHopf Algebra Deformations of Binary Polyhedral Groups
We show that semisimple Hopf algebras having a self-dual faithful irreducible comodule of dimension 2 are always obtained as abelian extensions with quotient Z2. We prove that nontrivial Hopf algebras arising in this way can be regarded as deformations of binary polyhedral groups and describe its category of representations. We also prove a strengthening of a result of Nichols and Richmond on c...
متن کاملWhen Is a Smash Product Semiprime ?
Miriam Cohen raised the question whether the smash product of a semisimple Hopf algebra and a semiprime module algebra is semiprime. In this paper we show that the smash product of a commutative semiprime module algebra over a semisimple cosemisimple Hopf algebra is semiprime. In particular we show that the central H-invariant elements of the Martindale ring of quotients of a module algebra for...
متن کاملar X iv : m at h / 02 06 18 0 v 1 [ m at h . R A ] 1 8 Ju n 20 02 WHEN IS A SMASH PRODUCT SEMIPRIME ?
Miriam Cohen raised the question whether the smash product of a semisimple Hopf algebra and a semiprime module algebra is semiprime. In this paper we show that the smash product of a commutative semiprime module algebra over a semisimple cosemisimple Hopf algebra is semiprime. In particular we show that the central H-invariant elements of the Martindale ring of quotients of a module algebra for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009